CSE 2321

Foundations 1: Discrete Structures

View on GitHub

Foundations I: Discrete Structures

##Autumn 2025

Class Information

Item Section 0200
Schedule Monday/Wednesday 1:30 - 2:50 PM
Location Zoom. Details on Carmen.
Professor Greg Ryslik / ryslik DOT 1 AT osu DOT edu
Professor Office Hours Fridays (2:20 - 3:40 PM) - via zoom. Contact me ahead of time if you plan to attend.
TA TBD
TA Office Hours Per request. Please reach out over slack/ email.
Slack Discussion Group See the link in Carmen! Say hello!

All classes will be recorded and posted for you to review online afterwards if you want to listen again.

Some classes may need to be rescheduled earlier or later due to professor’s travel. They will of course be recorded as well if you can’t attend that class.

Please enable your camera if at all able. I understand it’s not always possible but it’s very helpful to the me!

Description:

By the end of this course, students should be comfortable using propositional logic, first-order predicate logic, be familiar with basic mathematical proofs such as proof by contradiction and strong and ordinary mathematical induction, be familiar with using asymptotic notation, be able to analyze running time of simple iterative or recursive algorithms, and finally be familiar with basic definitions and algorithms in graph theory.

Grading Plan:

  1. Midterm 1: 20%
  2. Midterm 2: 20%
  3. Final: 35%
  4. HW: 20%
  5. Participation/Retrospectives: 5%

There might be tentative bonus points assigned for harder math or cs problems. Max would be at most 3%. At the discretion of the professor :-).

Retrospectives

At the end of each week, I ask you to submit a very short writeup about how the week went. Essentially: 1) What went well
2) What can be improved/did not go so well
3) What did you like learning.

A few sentences is fine here – I just want to keep an eye on how the course is progressing throughout the semester.

Grading Scheme

Grades will follow the standard scale:


A : 93 <= grade <= 100
A-: 90 <= grade < 93
B+: 87 <= grade < 90
B : 83 <= grade < 87
B-: 80 <= grade < 83
C+: 77 <= grade < 80
C : 73 <= grade < 77
C-: 70 <= grade < 73
D+: 67 <= grade < 70
D : 60 <= grade < 67
E : <60

Textbooks:

You might find the following books useful but I won’t assign homework from them.

  1. Discrete Mathematics and Its Applications, Eighth Edition, By Kenneth Rosen.
  2. Introduction to Algorithms, Third Edition, by Corman, Leiserson, Rivest and Stein.

Class course

Class Wk Date Day Topic Assign Out Assign Due Notes Video Related Files & Comments
1 1 8/27/25 Wed Logic & Proofs 1. Logic 1
2. Logic 2
3. Proof Methods
2 2 9/1/25 Mon No Class
3 2 9/3/25 Wed Logic & Proofs HW1
4 3 9/8/25 Mon Logic & Proofs
5 3 9/10/25 Wed Logic & Proofs HW2 HW1
6 4 9/15/25 Mon Set Theory
7 4 9/17/25 Wed Set Theory HW3 HW2
8 5 9/22/25 Mon Set Theory 1. Set Theory 1
2. Set Theory 2
9 5 9/24/25 Wed Set Theory HW4 HW3
10 6 9/29/25 Mon Review For Exam 1
11 6 10/1/25 Wed Exam1
12 7 10/6/25 Mon Algorithms HW4 1. Algorithms
2. Asymptotic Behavior
13 7 10/8/25 Wed Algorithms
14 8 10/13/25 Mon Algorithms HW5
15 8 10/15/25 Wed Algorithms/Induction 1. Induction
16 9 10/20/25 Mon Induction
17 9 10/22/25 Wed Induction HW6 HW5
18 10 10/27/25 Mon Induction
19 10 10/29/25 Wed Induction
20 11 11/3/25 Mon Recursion HW7 HW6
21 11 11/5/25 Wed Recursion 1. Recursion Master Theorem Notes
22 12 11/10/25 Mon Recursion HW8 HW7
23 12 11/12/25 Wed Review Master Theorem Notes
24 13 11/17/25 Mon Exam 2
25 13 11/19/25 Wed Graph Theory HW8
26 14 11/24/25 Mon Graph Theory 1. Graph Algorithms Eulerian Paths
27 14 11/26/25 Wed Graph Theory HW9
28 15 12/1/25 Mon Graph Theory
29 15 12/3/25 Wed Graph Theory HW10 HW9
30 16 12/8/25 Mon Final Released
31 16 12/10/25 Wed No Class HW 10